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Consistent Regularization for Damage Detection
with Noise and Model Errors
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Two techniques are proposed in a new regularization method for the inverse identification of local damages in a
structure. One technique is the introduction of a new side condition, and the other technique restricts the range of
variation of the regularization parameter by consistently choosing the optimal point on the L-curve. Both techniques
fully make use of the information from results obtained in previous iteration steps. A plane frame structure is studied
with two damaged elements and different levels of noise and model errors. Numerical results show that the proposed
consistent regularization method is very effective at improving the results of the ill-conditioned inverse-problem
phenomenon, compared with the Tikhonov regularization.

Introduction

NUMBER of methods have been developed for damage
detection in the last two decades. Many of the methods are
based on the observation of dynamic behavior of a structure
(Doebling et al. [1], Brincker et al. [2], Maeck and DeRoeck [3]),
among which the sensitivity approach via a model-updating tech-
nique is commonly accepted and applied extensively in the
engineering industry because of its clear mathematical background
and quantitative indications. However, this type of method is weak at
accommodating the influence of measurement errors, leading to ill-
conditioned problems, as demonstrated by Friswell et al. [4] and
Humar et al. [5]. This shortcoming means that the existence and
uniqueness of the solution is not ensured and numerical instability is
likely to take place in the course of the solution process [6,7].
Investigations have since been conducted to deal with the ill-
conditioned problems in model updating. Hansen [8,9] and Vogel
[10] proposed regularization methods for obtaining a solution of the
inverse problem. It is recognized in regularization theory that the
conventional output error, which is usually the vector of differences
between the computed and measured responses, can be made unreal-
istically small if the process of damage identification is allowed to
behave badly, such that the variable has arbitrarily large deviations
from the true set of parameter change, or there may be infinite sets of
ill-posed solutions. A stable solution scheme can be achieved by
imposing certain constraints in the form of added penalty terms with
adjustable weighting parameters based on posterior knowledge.
Recently, Titurus and Friswell [11] presented the sensitivity-based
model-updating method with an additional regularization criterion
and computed the solutions based on the generalized singular value
decomposition. Specific features of the parameter and response paths
were explored when the regularization parameter varies. The four
different types of spaces that arise in the solution were discussed,
together with the characteristics of the families of the regularized
solution. Weber et al. [12] applied the Tikhonov regularization and
truncated singular value decomposition consistently to a nonlinear
updating problem. Line-search and stopping criteria known from
numerical optimization were adapted to the regularized problem. The
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optimal regularization parameter was determined by generalized
cross-validation.

From experiences gained in model updating with laboratory test
structures, the authors found that Tikhonov regularization can give
the optimal solution when there is no noise or very small noise in the
measurement. But in the updating procedure for a nonlinear inverse
problem with the inclusion of noise and model error, the signal-to-
noise ratio is getting smaller [13,14] with each iteration, and the
solution obtained from a poor regularization parameter is usually
unacceptable. The algorithm does not accurately converge, and the
results depend strongly on the convergence criteria and tolerances.

In this paper, two techniques are proposed in a new regularization
method for the identification of local damages in a structure. One
technique proposed a new side condition that classified the elements
as possibly damaged and undamaged elements, which will be treated
differently later. The other technique restricts the range of variation
of the regularization parameter, such that the regularization solution
will be in a realistic range, and the correct optimal point from
the curvature of the L-curve is consistently chosen to ensure a
continuous converging process. Both techniques make full use of the
information from results obtained in previous iteration steps.
A plane frame structure is studied with two damaged elements and
different levels of noise and model errors to illustrate the application
of the proposed method. Numerical results show that the proposed
consistent regularization method is very effective at improving the
results in the inverse problem with ill-conditioning, compared with
the conventional Tikhonov regularization.

Formulation

Damage-Detection Method

A time-domain approach of model improvement is adopted [13] in
which the unit impulse response function (IRF) is used to detect local
damage in the following studies. The time-domain approach has a
benefit over the conventional frequency-domain approach, that there
is a large amount of redundant measured information limited only by
the time of measurement. The measured response is decomposed into
wavelets for the analysis, because the discretized wavelet transform
approach is generally applicable to responses from different types of
excitation. The IRF also has the advantage that it can be measured
repeatedly.

Sensitivity Matrix of Impulse-Response-Function Wavelet Coefficient

The equation of motion of an N-degree-of-freedom (DOF)
damped structural system under the unit impulse excitation can be
converted to [13]

{ Mh(7) + Ch(z) + Kh(s) =0

) ) )
h(0) =0, h(0)=M-'D
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where M, C, and K are the N x N mass, damping, and stiffness
matrices, respectively; D is the mapping matrix relating the force
excitation location to the corresponding DOF of the system; and h )
is the unitimpulse acceleration vector. The system is assumed to be in
static equilibrium before the application of the unit impulse
excitation.

An approximate model is adopted in which the local damage in the
structural system is expressed as

AK = Ao K;

ne
i=1
where Aq; is a fractional change in the stiffness of an element with
—1.0 < Ace; < 0.0, neis the number of elements in the structure, and
K, is the ith elemental stiffness matrix. The global stiffness matrix for
the damaged structure becomes K + AK.

Differentiate Eq. (1) with respect to the structural parameter o;
and using Newmark method [15] and discrete wavelet transform

(DWT). The sensitivity F) /0« can then be obtained [13]. The
sensitivity matrix can then be written as

VT 9PV () PV (1)
R da R daty R datyy,
LM CYIE) VA ) R ) VA ()
S = da dary da,, (2)
PV (1) 9PV (1) APV (1)
doy dory da,,

where [ refers to the /th DOF (sensor location) of the structure, matrix
S is also a function of time, and m is the number of structural
parameters to be identified with m < ne, in general. But m = ne is
adopted in the present study, and nt is the number of data points used.
A Daubechies wavelet is selected, as it satisfies the two crucial
requirements: the orthogonality of local basis functions and second-
order accuracy or higher, depending on the dilation expression
adopted.

Impulse-Response-Function Wavelet Coefficient
The measured response provides ﬁPWT [13]. The equation of
motion of the structure under general excitation is

Mx(t) + Cx(t) + Kx(t) =D - F(t) 3)
where F(t) is the vector of excitation force. If the system has zero

initial conditions, the acceleration response X;(z,) from location [ at
time ¢, is

%,(1,) = /0 ") F(1, — o) dr @

Applying DWT to h,(z) and F(z, — 1), respectively, and using the
orthogonal property of the wavelet basis [13], the acceleration vector
X; can be written in matrix form as

X, =FVT " 5)
where
X, =[%(t) X/() X (1) 17,
LT L VAT VAR (8
VT () FPM(n) - BN (0)/2
v | PV @) )2
FVT () FPVT () - FONT(1,0/2

and ﬁ],)WT in Eq. (§) can be expressed in the form of a pseudoinverse
as

i DWT — (FDWTT L FPWT)-1. FOWT' | %, (©)

Identification Equation and Implementation Procedure
Because the relationship between the impulse-response-function

wavelet coefficient ﬁPWT and the fractional stiffness parameter o is

nonlinear, a nonlinear model-updating technique such as the Gauss—
Newton method is required. This kind of method has the advantage
that the second derivatives, which can be challenging to compute, are
not required. The Gauss—Newton method in the damage-detection
procedure can be described in terms of the wavelet coefficient ﬁ],)WT
at the /th DOF of the structure as

Y (@) = b (@) + S(@) - Ae!
+S(@® + Aa') - Aa? 4 --- @)

The superscripts 0, 1, and 2 denote the iteration number, and d
denotes the damaged state. The damage identification equation for
the (k + 1)th iteration is

Si-Aaktl = (ABRPYY),,  (k=0,1,2,..) ®)

The iteration in Eq. (8) starts with an initial value «°, leading to
(AR = b (@) — b (@)

and S, = S(°). The parameter vector
k
af=a+ Z Ao
i=1
the sensitivity matrix S, = S(a*), and the residual vector
. . . kil
(ARP), =PV (@) —hPYT (%) — ) S;Aa!
i=0

(k=1,2,...) of the next iteration is then computed from results in
the previous iterations.

Vectors of the impulse-response-function wavelet coefficient at
the Ith DOF of the damaged and intact states areh}" ' (a) and
hP%T (), respectively. The vector hPV7 () from the physical
intact structure is computed, in general, from the associated ana-
lytical model via dynamic analysis, and H?WT(ad) is obtained by
Eq. (6) from the damaged structure from measurement.

The iteration is terminated when a preselected criterion is met. The
final identified damage vector becomes

Ao = Aa' + Aa® + -+ + Aa” 9)

where 7 is the number of iterations.

Consistent Regularization

Like many other inverse problems, the solution of Eq. (8) is often
ill-conditioned. Regularization techniques are needed to provide
bounds to the solution. The aim of regularization of the inverse
problem is to promote certain regions of parameter space in which
the model realization should exist. The two most widely used
regularization methods are Tikhonov regularization [7] and truncated
singular value decomposition [12].

The Tikhonov regularization expressions usually used for model
updating are based on engineering assumptions on the parameter
variations during iterations. The most frequently used conditions are
[16] 1) « — O, i.e., that the parameter values will be small;
2) @ — &, i.e., that the total parameter changes with respect to the
reference model will be small; and 3) Aa**! — 0, i.e., that the
parameter increment between iterations will be small. The
incremental forms of these conditions are 1) Aa**! — —a* and
2) Aa**! — « — @k, whereas condition 3 is already in such form.
Condition 1 and, to some extent, condition 2 represent physical
assumptions, whereas condition 3 acts mainly as a stabilizing
condition in highly nonlinear problems.

In the previously discussed side conditions, the parameter
variations or the updated parameters are bounded with respect to a
fixed reference vector (for example, a null or ®) for all iterations. In
fact, a parameter increment can be obtained from every iteration step
and the structural parameter vector is updated. Some characteristics
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can be found among the updated parameter vectors between
iterations. For example, some elements have large values, some have
small values, and some elements have fluctuating values around zero
in all the iterations. These characteristics can imply that some
elements are possibly damaged and some elements are undamaged.
To improve the solutions in the ill-conditioned problems, these
characteristics are included in the side conditions in the present study.
A new side condition is proposed that is similar to the side
condition 2 mentioned previously, as follows:
Aokt - q* — ok (10)
which implies that the total parameter change with respect to a set
of reference values determined from Eq. (13) is small. Here, the
reference vector e* is varying according to the results from the
previous iteration steps. According to the physical definition,

k
ozk:ozo—i—ZAa[
i=1

then a* can be similarly be written as
o = + ok

an

Because vector &’ is the constant set of initial analytical values, it will
disappear when substituting e* and o into Eq. (10). For simplicity in
the following equations, e* and a* are written as

k
Otk: § Aoti, a*:ak,*
i=1

Eq. (10) is rewritten as

k
Aokl — gk* — Z Aol (12)
i=1
and a"* is defined according to the following criteria:
When k=0, o =0 (13a)
When &k > 1, ifVaqg(g=12..,k-1),
q k
(Z Aozi) <0, ‘(Z Aa[) > const,
=1 j i=1 j (13b)

otherwise (), =0,

k
(ak*); = (Z Aozi)
i=1

.., m)

,
J

The subscript j denotes thejth element of the vector, and const is a
specified constant value. The physical explanation of the side
condition is that the elements are categorized as two kinds of
undamaged and possibly damaged elements according to the results
from the previous iteration steps. Because damage in a structure
is defined in terms of a stiffness-reduction factor in this study,
observation with the Tikhonov regularization shows that the updated

600
chcelemmeter
v
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fractional stiffness change (%) ; exhibits a definite negative value in
possibly damaged elements. On the other hand, the (%) ; of the jth
undamaged element will fluctuate around zero or with small
amplitudes. This characteristic of results from previous iterations is
considered in the determination of (¢**); in Eq. (13). The possibly
damaged elements are still updated with small incremental steps
between iterations, corresponding to the type 3 side condition, and
the overall parameter values for the assumed undamaged elements
are kept small or the parameter change would be small with respect to
zeros, which is the type 3 side condition for regularization, as
discussed previously.

The conditions may be unified into the cost functions that contain
the residual function and a penalty function with the updated
parameter vector as

J(Aa! 3) =[S, - Aak*! — (ARPYT), |13

+ 02 Aak+! — (@b — ab)|2 (14)
where a** is a quantity determined from results from previous k
iterations shown in Eq. (13), and A > 0 is the regularization param-
eter. The parameter A controls the extent to which regularization is
applied to the problem.

The regularization solution from minimizing the function in
Eq. (14) can be written in the following form as

Akt = (SIS, + 22D~ (ST(AR) — W2 (et —ah)) (15)

where the superscripts —1 and 7 denote the inversion and the
transpose of the matrix, and I is the identity matrix.

Applying singular value decomposition to the sensitivity matrix
S, we have

S,=UxV’ (16)

where U € R"™ ™ and V € R™™ are orthogonal matrices satisfying
U'U=1,and VIV =1,,,and ¥ = diag(0,,0,,...,0,), where the
singular values o; (i =1,2,...,m) are arranged in a decreasing
order, such thato, > 0, > --- > g, > 0.

Then the regularization solution in Eq. (15) can be written as

m UT Al’iDWT m
A @i+l = Zf"¥vi _ Z(l — f)VI ok — ak*)V,
i=1 i i=1
(17
where f; = 0?/(0? + A?) fori = 1,2, ..., m are referred to as filter
factors.

The solution norm
[Aat! — (@t — a3
and the residual norm

IS¢ - Aak+! — (AR, |13

can be expressed as

200 g y
f g 1
51 ¥ 16 47 2
5 I 8 z
y 6 7
F (4] [8]
> x 4+ +° 20 mm
Damaged
[3] 9] ‘
2 [21 (10,
el 24 411
1 [11]
! (1] 1
7 Y/

Fig. 1 One-story plane frame structure; brackets denote the element number.
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Fig. 2 Discrete SV, Fourier coefficient, and Picard condition number of
the plane frame structure.

=A™t — (" — a3
. o} UiT(AﬁPWT)k T ( ok ey )
:;(af+kz( o, + Vi (e _“’)) (18)
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2 .. ..
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These two quantities represent the smoothness and goodness of fit of
the solution, and they should be balanced by choosing an appropriate
regularization parameter.

The determination of the regularization parameter A can be
determined by different techniques such as the L-curve method [8]
and cross-validation. The L-curve method finds the appropriate
regularization parameter by maximizing the curvature function:

d_@ _ p/n// _ n/p//
ds (0> + )

where ' = dn/dA, o' =dp/dA, n” = d*>n/dA?, and p” = d*p/dA?,
with a limitation imposed on the range of A (i.e., 0y > A > 0,,).
Finally, the optimal regularized solution Aa**! is determined from
Eq. (15) or Eq. (17).

If the system carries no noise and no model error, the regu-
larization parameter A determined from Eq. (20) is correct. When
there is noise and model error, the regularization parameter A so
obtained will lead to a regularized solution that is beyond the physical
range. For example, the stiffness-reduction factor has a limited range
of —1.0 < Aa < 0.0. The regularized solutions determined by the
previous A are not in the range of [—1.0,0.0]. Some sorts of
constraints are needed in the process of finding the appropriate
regularization parameter A.

Such a constraint is defined as

(20)

V, <aF+ Aa(X) <V, 3))
where o is given in Eq. (12), Aa**1(X) is given in Eq. (15) or
Eq. (17), and V, € R™! and V;; € R™! are the given lower and
upper limit vectors, respectively. Because the local damage is often
represented by a percentage change in the system parameters and

coso
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Fig. 3 Evolution of identified results and cos 6 from the consistent, and Tikhonov regularization methods when there is 1% noise.
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each component of the damage vector is always less than unity, we
can set V; and V; as

V,=[-1 -1 —177, Vy=[1 1 17 (22)
If a narrower range is needed, V;, can be set smaller, closer to zero.
The constraint in Eq. (21) can also be expressed as the range of the
regularization parameter. From Eq. (17), the filter factors f; influence
the identified results together with A. When A increases, f; will
decrease and Ae**!(L) will decrease, where a* + Aa*+!'(1) will
have a small change and it would be more likely to be within the

physical range of changes. Therefore, Eq. (21) corresponds to

o; > A > const2 (23a)

instead of

o, >\>o0, (23b)
where const2 is determined from Eq. (17) by a numerical method to
be discussed later. When the allowable range is found, A is deter-
mined by finding the local maximal curvature expressed by Eq. (20).

In general, there is one turning point in the L-curve corresponding
to the point of maximal peak, and A is easily obtained from the point
with the maximal curvature. The L-curve may have several points
with a local peak, and some of them may be caused by measurement
noise or other errors and would lead to erroneous results if selected.
These peak values may be larger than the local peak value corre-
sponding to the correct optimal regularization parameter.

There may be many other techniques that can be used to select the
correct local peak points on the L-curve. When there are several local
peaks in the curvature curve, the point with the regularization

0.10
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0.06 -
0.04 4

0.02

Stiffness reduction factor

0.00 B

-0.02
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parameter closest to the optimal regularization parameter for the
immediately past iteration is chosen as the optimal point for the
presentiteration. This is based on the assumption that the incremental
change of the parameter would be small. Finally, the regularized
solution Ae**! is determined from Eq. (17).

Convergence Criterion

A stopping criterion based on the gradient of the residual and
penalty functions is adopted [12,17]. Two augmented matrices are
defined as

S
Ak:[/\kkl]’ sz[ —a"))]

The angle between the subspace spanned by A and R is given by
Dennis and Schnabel [17]:

(ARPY),

—A(AakH! — (ko @4

R} - (A -Ad*)
IR - 1A - Akt

cosf = (25)

The iteration is said to converge if cos 6 is less than a tolerance value.
The convergence for the present study is considered to be achieved
when cos 6 approaches a stable value with iterations.

Simulation Studies

A one-story plane frame structure shown in Fig. 1 is used for the
simulation study. The finite element model of the structure consists of
four and three equal beam-column elements in each vertical and
horizontal member, respectively. The columns of the frame are 1.2 m
high and the cross beam is 0.6 m long, and each member has a 10 mm

0.7 4

cos 6

C
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lteration No.

T
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T
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lteration No.

T
50 10

d) cos 0 for 10% noise

Fig. 4 Evolution of identified results and cos 0 from consistent regularization with 5 and 10% noise.
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depth and 20 mm breadth uniform rectangular cross section. The
modulus of elasticity and the mass density of materials are, respec-
tively, 69 x 10° N/m? and 2700 kg/m?>. The horizontal, vertical,
and rotational restraints at the supports are represented by large
stiffnesses of 1.5 x 10" kN/m, 1.5x 10° kN/m, and 1.5x
107 kN-m/rad, respectively. Rayleigh damping is adopted for the
system with the two modal damping ratios &, = £, = 0.01 for the
first two modal frequencies. The first 12 natural frequencies of the
structure are 13.09, 57.29, 76.68, 152.38, 196.43, 227.28, 374.59,
382.42, 580.05, 699.10, 764.79, and 977.69 Hz.

The structure is subject to a sinusoidal excitation F(f) =
10sin(1277)N applied vertically at node 6, as shown in Fig. 1. The
vertical acceleration at node 7 is recorded for the study. The sampling
frequency is 2000 Hz, which is high enough to avoid computational
error from using the Newmark method, and 0.25 s of measured
data are used. There are 500 data points of acceleration response
corresponding to 500 DWT coefficients of the IRF with the
Daubechies wavelet.

A damage scenario with 10% stiffness reduction in both the ninth
and tenth elements is studied, as shown in Fig. 1. Different levels of
random noise and model errors are included, and the proposed
regularization method and the Tikhonov regularization with side
condition 3 are used to compute the inverse problems. The results
from both methods are compared to illustrate the application of the
proposed method to ill-posed problems. Because the acceleration
responses from the damaged state are obtained by computation
instead of measurement in this paper, the measurement errors are
simulated with white noise added to the calculated accelerations as

(26)

X measured = Xcalculated + Ep Noisevar(xcalcu]i\ted)
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where X casureq 18 the vector of polluted acceleration, E p is the noise
level, N, is a standard normal distribution vector with zero mean
and unit standard deviation, var(-) is the variance of the time history,
and X, cuiaeq 18 the vector of calculated acceleration responses from
the damaged state of the structure.

The frame structure is statically indeterminate. Figure 2 plots the
discrete singular values (SVs) o;, Fourier coefficient |U(:,i)7-
Aﬁ?WT|, and Picard condition number, defined as the ratio of the
Fourier coefficient to the corresponding SV at the first iteration step
for model updating. It is seen that the Fourier coefficients for the
lower-order SVs remain relatively constant around the order of 10,
whereas they decay gradually with increasing order with their
singular values. This leads to very large values for the last four orders
of the discrete Picard condition. The discrete Picard condition is not
satisfied, and regularization methods must be applied to obtain a
regularized and stable solution.

Case 1: Low Noise Level

One-percent random white noise is added to the structural
acceleration responses obtained from the damaged structure from
Eq. (26) to simulate the low noise effect in the inverse problem. The
evolution of reduction factors of all elements with iterations is shown
in Fig. 3a for the consistent regularization and in Fig. 3c for the
traditional Tikhonov regularization. It can be seen that the reduction
factors of the two damaged elements converge to the true value after
about 20 iterations and remain constant with increasing iterations for
both regularization methods. The evolution of reduction factors for
other intact elements converges to O after about 20 iterations
in the consistent regularization method, but not in the Tikhonov
regularization, in which some results converge to nonzero values
(for example, the seventh element converges to 0.06 and the fifth
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Fig. 5 Evolution of identified results and cos 6 from consistent regularization with 15% noise and 15% noise plus model error.
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element converges to —0.06). It is obvious that the consistent method
is superior to the traditional Tikhonov regularization in this exercise.
The evolution of the stopping-criteria value (cos 6)) computed by
Eq. (25) with iterations is shown in Figs. 3b and 3d for the two
methods. The value of cos 6 is noted to fluctuate at the beginning and
to finally converge to a value close to zero in both methods. When
cos 6 arrives at a steady value, it means that the iteration is
converging. The damaged vectors can then be obtained easily from
results obtained from any iteration after the critical iteration.

Case 2: Median Noise Level

Five and 10% noise levels are added separately to the computed
acceleration responses of the damaged structure to simulate more
severe noise effect. The evolution of stiffness-reduction factor for all
elements and the stopping criteria for the consistent regularization
method are shown in Fig. 4. The evolution of results for the consistent
regularization method is similar to the last case with 1% noise and is a
little bit poorer. The application of the consistent regularization
method is shown to be able to reduce the noise effect greatly.

Case 3: High Noise Level and Model Errors

The noise level is further increased to 15%, and the results from the
consistent regularization method are shown in Figs. 5a and 5b.
Compared with those from 1, 5, and 10% noise levels, the results
become a little bit poorer but are still very good. Model error is then
introduced with 1% underestimation in the stiffnesses of all elements
of the structure. The 15% noise level remains in the responses, and
the identified results from the consistent method are shown in
Figs. 5c and 5d. It can be seen that the results arrive at the steady

values after about 50 iterations. With further iterations beyond the
50th iteration, the stiffness-reduction factor and the stopping-criteria
value cos 6 fluctuate greatly around the stable values at the 50th
iteration. The results after the 50th iteration are not very good, but this
fluctuating behavior provides an indication of an acceptable set of
converged results before their occurrences, i.e., at the 50th iteration.
Results from the traditional Tikhonov regularization method for
cases 2 and 3 are getting worse compared with case 1, with many
false positives in other elements and with the identified damage
extent increasing with increasing noise level. However, the damaged
elements can still be identified with correct damage extent in the
presence of the different noise levels, and they are not shown.

Optimal Regularization Parameter

The optimal regularization parameters for every iteration step in
the previous cases with 1, 5, 10, and 15% noise and 15% noise plus
model errors using the consistent method and traditional Tikhonov
regularization are shown in Fig. 6. The pattern of variation of the
regularization parameter for the four noise levels from the consistent
method shown in Fig. 6a are similar, with only the case with 15%
noise showing some differences. The case with 1% noise from
traditional Tikhonov regularization shown in Fig. 6¢c has similar
pattern to Fig. 6a in the first 10 iterations. However, the 11th to 15th
regularization parameters in Fig. 6¢ are smaller compared with those
in Fig. 6a, which may mean that the large perturbations in the
parameter increment vectors due to the ill-conditioning are less
restrained, leading to a set of poorer identified results. The case with
15% noise plus model errors is shown in Fig. 6b. The pattern is
completely different from the case with only 15% noise. This again
indicates that model error has a large effect on the identified results.
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Fig. 7 Curvature after the first iteration with 1% noise level.

Determination of the Regularization Parameter Range

To illustrate the application of Egs. (21-23) in determining the
regularization parameter range and the optimal parameter, the cur-
vature of the L-curve, after the first iteration for the case with 1%
noise using the consistent method and Tikhonov regularization
method is shown in Fig. 7. Figure 7a shows the complete curvature
curve and Fig. 7b gives part of the curvature curve that is rejected
according to the requirements in Eq. (21), in which the cutoff point is
computed from Eqgs. (17) and (21) by the following method.

The range [0, 0,] is divided into 800 divisions, and there are 801
discrete values that may be taken up by A in Eq. (17). The compu-
tation starts with the smallest value to check whether the resulting
Ao’ would be within the specified range of [—1.0,0.0]. The
smallest value that satisfies the requirement mentioned previously is
considered the limiting constant, const2 in Eq. (23), and the optimal
regularization parameter is selected within the range of oy >
A > const2.

The hollow circle denotes the optimal regularization parameter.
The symbol X denotes the maximal curvature point. When optimal
regularization parameter is searched on the whole L-curve in the
Tikhonov regularization, the point marked by X is selected, and the
corresponding regularization parameter 0.3883 will be the optimal

regularization parameter. This parameter would lead to results that
are not in the physical range, which means that some stiffness-
reduction factor is greater than 1.0 or less than —1.0 and the iteration
cannot continue. This is usually termed in computation as a diverged
solution. When the optimal point is searched in the truncated
curvature curve, the point marked by o is selected, and the obtained
results from the consistent regularization method and traditional
Tikhonov regularization adopting this selection process shown in
Figs. 3a and 3c are satisfactory. This approach of consistently
selecting the optimal regularization parameter is also applied to other
cases using the consistent regularization method.

Consistent Selection of the Optimal Regularization Parameter

After the correct range of the regularization parameter A is
determined as discussed previously, the optimal regularization
parameter can be chosen correctly. The application of the consistent
selection of the optimal regularization parameter is illustrated by
plotting the L-curve and the corresponding curvature curve for the
first 24 iterations for the case with 1% noise level shown in Figs. §—
10. The identified results converge to the steady values after 24
iteration steps.
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Fig. 8 L-curve and curvature in the first—eighth iteration steps for the case with 1% noise.
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Fig. 9 L-curve and curvature in the 9th—16th iteration steps for the case with 1% noise.

The solid line denotes the whole curve and the dashed line denotes
the truncated curve according to Eq. (21), and they are overlapping in
the figures. The point marked by o denotes the optimal turning point
from using the consistent-selection technique together with the new
side condition in Eq. (13). The point marked by * is determined from
using the new side condition in Eq. (13) only.
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It can be seen that the points marked by o and * are overlapped in
the first to third iterations, whereas the two points are separated in the
fourth iteration. The identified damage vectors from each iteration
step by the two methods are shown in Tables 1 and 2. It can be seen
that the damage vectors from the first three iterations are identical
between the two methods, whereas obvious difference happens in the
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Fig. 10 L-curve and curvature in the 17th-24th iteration steps for the case with 1% noise.
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Table 1 Damage vectors from first 24 iterations using the new side condition and the consistent regularization selection
technique: iteration steps 1-12

Iteration steps

Element number 1 2 3 4 5 6 7 8 9 10 11 12
Consistent method using both techniques

1 9.0E—04 0.0023 0.0042 0.0098 0.0173  0.0234 0.0212 0.0106 —0.0182 —0.0037 —0.0018  —0.0115

2 9.0E—04 0.0021 0.0036 0.0057 0.0098  0.0144 0.016 0.0236 0.0177 0.0158 0.0149 0.0145

3 0.0015 0.0033  0.0053 0.0099 0.0157  0.0228 0.0382 0.0401 0.0114 0.0088 0.0076 0.0055
4 0.0041 0.009 0.0126 0.0204 0.0241  0.022 0.0056 —0.0036 —0.0193 —0.0046 —0.0024  —0.0061

5 0.0049 0.011 0.0142 0.0084 0.0044  0.0033 0.0044 0.0036 —0.0087 —0.0061 —0.0032  —0.0056
6 0.0061 0.0128 0.0168 0.0167 0.0081 —0.0014 —8.0E — 04 0.0014 0.0019 —0.0039 —0.0022  3.0E—-04
7 0.0048 0.011 0.0142 0.0084 0.0043  0.0033 0.0059 0.0072 0.0158 0.0098 0.0066 0.0062
8 0.0041 0.009 0.0126 0.0204 0.0241  0.0221 0.0093 0.0052 0.02 0.0157 0.0135 0.0089
9 0.0015 0.0033  0.0053 0.0099 0.0156  0.0228 0.0401 0.0478 0.0703 0.0688 0.0681 0.0805
10 8.0E—04 0.002  0.0036 0.0056 0.0095  0.0142 0.0195 0.0329 0.0758 0.0753 0.0751 0.0923
11 9.0E—04 0.0023 0.0042 0.0097 0.0172  0.0234 0.0245 0.0202 0.0275 0.0246 0.0231 0.0155

Consistent method using only the new side condition

1 9.0E—04 0.0024 0.0042 0.0106 0.0226  0.0227 0.0306 0.0303 —0.0256 —0.0082 —0.0033  —0.0019

2 9.0E—04 0.0021 0.0036 2.0E—04 —0.0031 0.0 —0.0049 —2.0E—-04 —0.0494 —0.0051 —0.0016 —1.0E—03
3 0.0015 0.0033  0.0053 0.0099 0.0173  0.0171 0.0321 0.0319 0.0201 0.0134 0.0117 0.0106
4 0.0041 0.009 0.0126 0.0332 0.0398  0.0383 0.0189 0.0176 —0.046 —0.0122 —0.007 —0.0039
5 0.0049 0.011 0.0143 0.006 0.0037  0.0012 0.0035 0.0018 —0.0278 —0.0156  —0.0093  —0.0049
6 0.006 0.0128 0.0168 0.0067 —0.0134 —0.0025  —0.0084 —0.0017 —7.0E—-04 —0.0114 —0.0075  —0.0043
7 0.0048 0.0109 0.0142 0.0054 0.004 0.0015 0.0054 0.0037 0.0374 0.021 0.011 0.0059
8 0.0041 0.009 0.0127 0.0347 0.042 0.0405 0.0258 0.0245 0.0509 0.0396 0.0325 0.0287
9 0.0015 0.0034  0.0053 0.0091 0.0175  0.0174 0.0351 0.0349 0.0907 0.0869 0.0845 0.0831
10 8.0E—04 0.002 0.0036 2.0E—04 —0.0031 0.0 —9.0E—-04 —1.0E—04 0.0422 —7.0E—04 —0.0014 —9.0E —04
11 9.0E—04 0.0023 0.0042 0.01 0.0222  0.0223 0.0349 0.0346 0.0954 0.0891 0.0853 0.0832

Table 2 Damage vectors from first 24 iterations using the new side condition and the consistent regularization selection
technique: iteration steps 13-24

Iteration steps

Element number 13 14 15 16 17 18 19 20 21 22 23 24
Consistent method using both techniques
1 —0.0028  —0.0079  —0.0023  —0.0049  —7.0E—04 -50E—04 —00022 -50E—04 —40E—04 —4.0E—04 —4.0E—04 —3.0E— 04
2 0.0126 0.0109 0.0095 0.0069 0.0065 0.0062 0004  40E—04 10E—04 1.0E—04 10E—04 20E—04
3 0.0035 00012 —0.0011 80E—04 —20E—04 —20E—04 70E—04  0.0012 0.0013 00012 1.0E—03 9.0E—04
4 —0.0025  —0.0028  —0.0013  —80E—04 0.0 0.0 —9.0E— 04 —3.0E—04 —50E—04 —50E—04 —40E—04 —4.0E—04
5 —0.0025  —0.0016 —20E—04 —10E—03 40E—04 30E—04 —80E—04 —20E—04 —40E—04 —30E—04 —2.0E—04 —20E—04
6 —0.0015  20E—-04 —10E—04 SOE—04 40E—04 40E—04 1.0E—04 10E—04 10E—04 10E—04 10E—04 1.0E—04
7 0.0039 0.0015 1LOE—04 00012  50E—04 SOE—04  1.0E—03 40E—04 S5SO0E—04 40E—04 40E—04 3.0E—04
8 0.0069 0.0052 0.0046 0.0016 30E—-04  3.0E—04 00018  60E—04 7.0E—04 G6OE—04 40E—04 3.0E—04
9 0.0795 0.0877 0.0875 0.0921 0.0923 0.0925 0.0955 0.0969 0.0978 0.0983 0.0987 0.099
10 0.0915 0.0986 0.0983 0.1001 0.1001 0.1002 0.1006 0.1013 0.1011 0.1008 0.1006  0.1004
1 0.0136 0.0074 0.0061 00035  —20E—04 —10E—04 —10E—04 —1.0E—04 —40E—04 —4.0E—04 —4.0E—04 —4.0E—04
Consistent method using only the new side condition

1 —0.0011  —0.0092  —0.0148  —0.0178  —0.0157  —0.0132  —00113  —0.0094  —0.0093  —0.0093  —0.0093  —0.0093
2 —6.0E—04 8OE—04  0.0051 0.0124 0.017 0.0204 0.0207 0.0201 0.0203 0.0204 0.0204  0.0204
3 0.0099 0.0236 0.0214 0.01 ~0.0049  —0.0111 —0.0123  —00134  —00137 00138  —0.0139  —0.0139
4 —0.0023  —0.018  —0.015 —0.0075 0.0044 0.0079 0.0068 00054  0.0055 0.0055 0.0055 0.0055
5 —0.0027  40E—04 —90E—04 —0.0029 —0.0068  —0.0054 —0.0032 —20E—04 10E—04 20E—04 20E—04 20E—04
6 —0.0026  —0.0012 0.0011 0.0032 0.0033 0.0017 00011  70E—04 70E—04 70E—04 7.0E—04 7.0E—04
7 0.0031 0.0036 0.0044 0.005 0.0073 0.0057 00037  60E—04 3.0E—04 30E—04 20E—04 20E—04
8 0.0265 0.0187 00081  —0.0036  —0.0147  —0.0139 —0.0114  —0.0092  —0.0092  —0.0092  —0.0093  —0.0092
9 0.0824 0.0927 0.0985 0.1069 0.1186 0.1203 0.1205 0.1217 0.1222 0.1224 0.1225 0.1225
10 ~50E—04  0.0073 0.0237 0.0453 0.0678 0.0777 0.0787 0.0791 0.0788 0.0787 00786 0.0786
I 0.082 0.0778 0.0687 0.0524 0.0273 00113 0.0075 0.0048 0.0046 0.0046 00046 0.0046

fourth iteration, due to the different optimal regularization parameter

found in Fig. 8. When the iteration continues, the optimal points from

both methods are different in the 8th, 15th, and 17th—24th iterations.

The final results, shown in Fig. 3a, from using both proposed 1 -0 1st

techniques are very good, and the results using only the new side
condition shown in Fig. 11 are acceptable, with one false alarm at the
second element with 0.0204 stiffness reduction and with some error
in the damage extent. The consistent-selection technique in addition
to the new side condition is shown to be better than the new side
condition only in obtaining a good and converged set of identified
results. It can be concluded from this study that the consistent-
selection technique can ensure a stable model updating for obtaining
good updated parameter vectors, and the new side condition in
Eq. (13) can increase the speed of convergence of the solution.

The final identified damage vectors using the consistent method
and Tikhonov method with different levels of noise plus model errors
are shown in Table 3. It can be seen that the results using the proposed
two techniques are very good even if there is 15% noise plus model
error. However, the results from Tikhonov method with side
condition 3 and traditional L-curve method have many false alarms,
especially in the cases with 5 and 10% noise levels, with the largest
false alarm occurring at the seventh element.

——2nd
——3rd
—O—4th
—#—5th
—f—6th
—A—T7th
——8th
—&—oth
—O—10th
—H—11th

Stiffness reduction factor

T T T T T T T
20 30 40 50
Iteration No.
Fig. 11 Evolution of stiffness-reduction factor for all elements using
only the new side condition.
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Table 3 Damage vectors obtained from the consistent method and Tikhonov method

1% noise 5% noise 10% noise 15% noise 15% noise plus model error
Element Consistent Tikhonov Consistent Tikhonov Consistent Tikhonov Consistent method
number method method method method method method
1 —3.0E — 04 —0.0193 —0.0013 —0.0297 —0.0025 —0.0349 —0.0035 —0.0055
2 2.0E — 04 0.0155 0.0011 0.0309 0.0022 0.0501 0.0031 0.0102
3 6.0E — 04 0.0111 0.0028 0.0254 0.0056 0.0314 0.0084 0.014
4 —3.0E - 04 0.017 —0.0016 0.0182 —0.0033 0.0118 —0.0048 —0.005
5 —1.0E—-04 —0.0642 —3.0E—04 —0.1345 —7.0E—04 —0.1907 —9.0E — 04 —0.0014
6 1.0E — 04 0.0027 4.0E — 04 6.0E — 04 8.0E — 04 —0.0019 0.0012 0.0019
7 2.0E — 04 0.0604 0.0011 0.1176 0.0021 0.1577 0.0032 0.005
8 1.0E — 04 —0.0245 4.0E — 04 —0.024 6.0E — 04 —0.017 8.0E — 04 0.0048
9 0.1 0.0889 0.1001 0.0713 0.1002 0.0654 0.1004 0.0766
10 0.0998 0.0899 0.0992 0.0848 0.0983 0.0735 0.0974 0.0968
11 —3.0E — 04 0.0177 —0.0018 0.0155 —0.0037 0.0084 —0.0056 1.0E — 03
Conclusions Regularization,” Philosophical Transactions. Series A, Mathematical,

In this paper, a new side condition is proposed that classified the
identified elements as possibly damaged and undamaged elements
from results obtained from previous iterations. The possibly
damaged elements are improved with small steps between iterations,
and the parameters for the undamaged elements are required to
approach zero. These measures can make the updating procedure
converge to the real values more quickly and accurately. In addition,
the range of the regularization parameter is computed in advance, and
the optimal point on the curvature curve is consistently selected to
ensure that the updating procedure is performed on the right path and
that the parameters are improved accordingly. It can be seen from the
numerical studies that the proposed method using both techniques
can give very accurate results in an ill-conditioned inverse problem
with high levels of noise and model errors, whereas with the
conventional Tikhonov regularization method, the identified
parameters in the undamaged elements fluctuate greatly around
zero, and the incorrect optimal point on the L-curve may be chosen in
some iterations. Results can be obtained only in the first several
iterations and they cannot be improved gradually in the following
steps. The accuracy of the results is also affected by noise or model
errors, and the computation stops when the results fall outside their
physical limits.
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